離散数学試験問題と解答 全体集合 は を満たす自然数 とする。いま、 の部分集合 を は の約数 は素数 とするとき、以下の を求めよ。以下の の中から正しいものを全て選べ。 実数全体の集合を とし、以上の実数全体の集合を とする。
本文PDFプレビュー 本文PDF [649K] 訂正日: 2008/12/25 訂正箇所: 論文タイトル 訂正内容: 訂正前 : 離散数学・組合せ諭 訂正後 : 離散数学・組合せ論 抄録 離散数学は,可算有限個の要素の数え上げやその関係性を考察する数学の分野で,計算機科学の基礎となる。その内容には様々なものが含まれるが,本科目では,その中でも,どのような情報処理においても必須となる (1)集合と論理,(2)離散値関数,(3)組合せ論,(4)グラフ理論, (5)情報 離散数学 コンピュータ・サイエンスの基礎数学 演習591題解答付 (マグロウヒル大学演習シリーズ)/リプシュッツ/成嶋 弘 離散数学が悲惨数学にならないために 大学で習う数学は、中学や高校で学んできた数学(実のところ計算問題)とは異なり、消化不良を 非常に起こしやすいと思います。数学には、代数学・幾何学・解析学・確率統計学など、いくつかの分 離散数学とは一個一個がバラバラ、独立した事象が有限個ある状態を扱うジャンルである。 なので基本的には全てにおいて手法や結果が存在するのが特徴なのだ。数学の中では比較的新しいジャンルである。アルゴリズム的な解答に
離散数学試験問題と解答 2019 9 1. (a) (1) 集合A = f0;1g, B = fx j (x 1)(x 2)(x 3) = 0gとする。このとき,集合A[B, A\B, A B, A B, 2A のそれぞれについて、要素を列挙する方法で記述せよ。 (2) 黒い碁石4個と白い碁石2個を一列に並べる並べ方は何通りあるか求めよ。 離散数学 前回の復習: 関係と関数 •キーワード 2項関係, 単一集合上の関係, 相等性, 全体関係, 空関係, 逆関係, 関係の性質, 同値関係, 同値類,分割,商集合, 半順序関係, 関数, 単射, 全射, 全単射 •表現方法 •座標図、行列、矢線 2 離散数学第3回 集合と論理(3):述語論理 岡本吉央 okamotoy@uec.ac.jp 電気通信大学 2016年10月24日 最終更新:2016年10月21日12:23 岡本吉央(電通大) 離散数学(3) 2016 年10 月24 日 1 / 61 スケジュール前半(予定) 1 集合と論理(1):命題論理 (10月3日) 2019/10/03 1 情報数学 I 第 1 回「情報数学とは?命題,述語,論理記号」 ・教科書 やさしく学べる離散数学 ISBN 9784320018464 石村 園子 共立出版 2007年 ・参考書 情報の基礎離散数学―演習を中心とした ISBN 9784764902763 小倉 久和 近代 前回の復習:集合 •キーワード 集合, 要素, 部分集合, 普遍集合, 空 集合, 集合の演算, 双対性, 集合代数 の法則, 集合の集合(=類), べき集合 今日のテーマ: 関係と関数 •関係(2項関係) •単一集合上の関係 •相等性, 全体関係, 空関係, 逆関係
離散数学Ⅰ (Discrete Mathematics Ⅰ) 【科目コード】11003002 【担当教員】石坂 裕毅 【学部・学科, 単位区分, 単位数】 情報工学部 情工1類 Ⅰクラス, 必, 2.0 【開講学期】第1クォーター, 【クラス】01, 【対象学年】1 離散数学I 第4回 茨城大学工学部 佐々木稔 今回のお話 •論理 •値関係 論理 •複雑な命題に含まれる論理演算子 –論理和、論理積、否定、「~ならば~」 •「P ならば Q」、「P ⇒ Q」 –「もし整数xが3の倍数なら、2xは6の倍数で P(x 2018年度離散数学Iレポート問題 1. 以下の関係式のうち成り立つものをすべて求めよ.(1point) ϕ 2 ϕ ϕ ϕ fϕg 2 fϕg fϕg ffϕgg fϕg 2 fϕ fa;ϕgg fa;ϕg 2 fϕ fa;ϕgg fa;ϕg fϕ fa;ϕgg 2. 論理的同値関係 による,論理式の集合L の分割(商集合) L= を求めよ.(1point) 「近年, 離散数学は純粋数学と応用数学の両面からの刺激を受けその研究活動か活性 化している特に, 計算幾何学, 離散幾何学と呼ばれる分野は, 代数幾何, 超幾何函 数, トポロノーなとの純粋数学とともに, 組合せ幾何, 計算理論なとの 離散数学I 第6回 関数(1) 荒木徹 電子情報理工学科 2019年度 荒木徹(電子情報理工学科) 離散数学I 第6 回 2019 年度 1/21 前回の演習 演習1:次の命題は正しいか?任意の集合A;B に対して,以下が成り立つ. (A[B) B A証明.この 本文PDFプレビュー 本文PDF [649K] 訂正日: 2008/12/25 訂正箇所: 論文タイトル 訂正内容: 訂正前 : 離散数学・組合せ諭 訂正後 : 離散数学・組合せ論 抄録
[I216] 計算量の理論 と 離散数学 上原隆平, 藤﨑英一郎 北陸先端科学技術大学院大学 2017年5月11日 藤﨑英一郎 (JAIST) 計算量の理論と離散数学 2017 年5 月11 日 1 / 21 2013/06/08 離散数学 第5回振り返り問題 学籍番号: 氏名: 問 f: X ! Y とし, A X とする. このとき, f 1(f(A)) A を示せ. 証明 8a 2 A に対してa 2 f を示す1(f(A)) . 順像f(A) の定義は f(A) = ff(x) j x 2 Ag: 8a 2 A に対して, x = a とみなすとf(a) 2 f(A): Y の部分集合B に対して,B の逆 … 離散数学入門a レポート課題No. 2 解答例 1. (a) (b) (c) 2.(a)deg(v1) = 2, deg(v2) = 2, deg(v3) = 3, deg(v4) = 1, deg(v5) = 0. (b)孤立点:v5 離散数学演習問題解答( 版) 第 章 定理 の十分性の証明を与える.モジュラー束 が分配束でなかっ たとする.すると,ある / で分配律 が満たされない.すなわち, / となるような / が存在する.そこで,# / 0 とする.すると, 高等学校数学における離散数学の教材化の意義に関する研究 教科・領域教育専攻自然系(数学)コース 熊澤和敏 1.研究の目的・方法 筆者は,コンピュータが高等学校現場に配置されたことをきっかけに, 数学教育においてコンピュータを情報科学(コンピュータ科学)との関連から, いかに
[I216] 計算量の理論 と 離散数学 上原隆平, 藤﨑英一郎 北陸先端科学技術大学院大学 2017年5月11日 藤﨑英一郎 (JAIST) 計算量の理論と離散数学 2017 年5 月11 日 1 / 21